BAB II LANDASAN TEORI

2.1 Tinjauan Pustaka

Tinjauan pustaka yang serupa dan relevan dengan penelitian bertujuan untuk membuktikan keaslian penelitian, untuk tinjauan pustaka dapat dilihat pada tabel 2.1 dibawah ini:

Tabel 2.1 Studi Pustaka

1	Judul Penelitian	Sistem Informasi Geografis Pemetaan Wilayah		
		Kelayakan Tanam Tanaman Jagung Dan Singkong Pada		
		Kabupaten Lampung Selatan		
	Nama Peneliti	Alita et al., (2020)		
	(Tahun)			
	Permasalahan	Butuhnya pengetahuan lahan dari segi luas tanah, lokasi,		
		potensi yang ada, dan ekosistem yang berkembang		
		sebagai syarat yang baik untuk pertanaman jagung dan		
		singkong		
	Metode	Kualitatif		
	Hasil	Website sistem kelayakan tanaman singkong dan jagung		
		yang dapat menampilkan data hasil panen dan lokasi		
		layak tanam dalam bentuk peta		
	Kekurangan	Peta yang ditampilkan tidak bersifat tematik interaktif,		
		sehingga sulit mengira seberapa luas lahan yang layak		
		untuk ditanami		

2	Judul Penelitian	Sistem Informasi Geografis Pemetaan Lahan Tanaman	
		Melon Khususnya Di Wilayah Kota Binjai Berbasis	
		Web	
	Nama Peneliti	Putri, (2022)	
	(Tahun)		
	Permasalahan	Petani kesulitan dalam mencari informasi tentang lahan	
		tanaman melon yang cocok untuk ditanami karena	
		kurangnya akses informasi yang memadai.	
	Metode	Kualitatiff	
	Hasil	sistem pemetaan wilayah yang menggunakan parameter	
		indeks potensi lahan yaitu kemiringan lereng, jenis	
		tanah, litologi (jenis batuan), curah hujan dan	
		kerawanan bencana	
	Kekurangan	Visualisasi masih ditampilkan dalam bentuk wireframe	
3	Judul Penelitian	Sistem Informasi Geografis Untuk Pemetaan Lahan	
		Kakao Menggunakan Leaflet Js Dan Geojson	
	Nama Peneliti	Arifin & Supriyatna, (2023)	
	(Tahun)		
	Permasalahan	Web portal yang digunakan sebagai sistem informasi	
		komoditas kakao di Kabupaten Pesawaran dianggap	
		belum berhasil dalam memberikan efek yang	
		diharapkan	
	Metode	Rapid Application Development (RAD)	

	Hasil	Aplikasi yang dapat memudahkan masyarakat, terutama	
		dalam mencari informasi mengenai lokasi lahan kakao,	
		serta melakukan monitoring dan evaluasi terhadap	
		komoditas kakao yang ada di Kabupaten Pesawaran	
	Kekurangan	Peta yang ditampilkan belum bersifat tematik dan	
		interaktif, tidak ada informasi terkait komoditas	
4	Judul Penelitian	Aplikasi Sistem Informasi Geografis (SIG) Pemetaan	
		Lahan Pertanian dan Komoditas Hasil Panen di	
		Kabupaten Sidrap Berbasis Web	
	Nama Peneliti	Masnur et al., (2022)	
	(Tahun)		
	Permasalahan	Lokasi lahan pertanian belum terlalu dikenal oleh	
		masyarakat lokal maupun pengunjung.	
	Metode	Prototype	
	Hasil	aplikasi SIG pemetaan lahan pertanian dan komoditas	
		hasil panen di kabupaten tersebut yang berisi informasi	
		lahan dan hasil panen	
	Kelemahan	Pengunjung harus melakukan login untuk menggunakan	
		sistem, tidak ada informasi tentang komoditas	
5	Judul Penelitian	Sistem Kesesuaian Lahan Bawang Putih berdasarkan	
		Spatial Decision Tree	
	Nama Peneliti	Sitanggang et al., (2020)	
	(Tahun)		

Permasalahan	Keterbatasan lahan yang tersedia untuk menanam	
	bawang putih dan mengakibatkan rendahnya produksi	
	bawang putih.	
Metode	Algoritma spasial ID3	
Hasil	Aplikasi berbasis web yang menggambarkan kesesuaian	
	lahan bawang putih di Magetan	
Kekurangan	Tidak ada informasi tentang komoditas	

Dari tinjauan pustaka yang telah dipaparkan, menunjukan beberapa kekurangan dalam beberapa aspek seperti peta yang tidak interaktif, kesulitan akses bagi pengguna dan kurangnya informasi terkait komoditas yang ada. Sehingga pada penelitian ini, penting untuk mengatasi kekurangan yang ada dan akan menambahkan fitur terkait informasi benih yang unggul dan artikel terkini tentang komoditas kedelai.

2.2 Sistem Informasi Geografis

Sistem Informasi Geografi (SIG) adalah suatu sistem yang berhubungan dengan data spasial. SIG merupakan sistem informasi yang terkomputerisasi yang melibatkan berbagai prosedur terkait penyimpanan, pengolahan, dan penyajian data yang berkaitan dengan sumber daya lahan. Manfaat SIG sangat luas, dan aplikasinya mencakup bidang-bidang seperti pertanian, kehutanan, hidrologi, dan lainnya. Saat ini, SIG telah banyak digunakan dalam berbagai aplikasi di bidang pertanian, kehutanan, hidrologi, dan lainnya (Rahmawati et al., 2013).

2.3 Kedelai

Menutur Nurkholis & Styawati, (2021) Kedelai adalah salah satu sumber utama protein yang bisa dimanfaatkan untuk dikonsumsi dalam berbagai bentuk

seperti tempe, tahu, susu kedelai, dan lain-lain. Kedelai juga salah satu jenis bijibijian yang memiliki kandungan lemak nabati dan protein yang tinggi (Setyawan & Huda, 2022). Kedelai ini telah menjadi salah satu bahan makanan pokok yang penting bagi masyarakat Indonesia.

2.4 Kabupaten Lampung Timur

Kabupaten Lampung Timur memiliki luas wilayah 5.325,03 km². Dilihat dari segi geografis, Kabupaten Lampung Timur berada di antara 105°15′ Bujur Timur dan 105°15′ Lintang Selatan. Kedudukan geografis Kabupaten Lampung Timur di bagian utara berbatasan dengan Kecamatan Rumbia (Kabupaten Lampung Tengah) dan Kecamatan Dente Teladas (Kabupaten Tulang Bawang). Bagian timur berbatasan dengan Laut Jawa. Bagian selatan berbatasan dengan Kecamatan Jati Agung, Candipuro dan Way Sulan (Lampung Selatan). Serta di bagian barat berbatasan dengan Kota Metro.

Kabupaten Lampung Timur memiliki iklam kategori B yang dicirikan dengan bulan basah selama enam bulan yaitu Desember – Juni dengan suhu rata – rata 24 – 34°C. Curah hujan rata-rata setiap tahun berkisar antara 2.000 hingga 2.500 mm. dan bulan kering selama tiga bulan.

2.5 Website

Menurut Feri Efendi (2017) Website adalah suatu bentuk media publikasi elektronik yang terdiri dari serangkaian halaman web yang saling terhubung melalui link pada elemen teks atau gambar. Istilah website atau situs merujuk pada kumpulan halaman yang memuat informasi berupa teks, gambar diam atau gerak, animasi, suara, video atau kombinasinya, baik dalam bentuk statis maupun dinamis,

yang saling terhubung membentuk sebuah struktur yang terdiri dari jaringanjaringan halaman (Suprianto & Matsea, 2018).

Berdasarkan pemaparan tersebut, dapat disimpulkan bahwa website atau situs adalah bentuk media publikasi elektronik yang terdiri dari kumpulan halaman web yang saling terhubung melalui link pada element teks atau gambar, yang memuat informasi berupa teks, gambar diam atau gerak, animasi, suara, video atau kombinasinya, baik dalam bentuk statis maupun dinamis, yang saling terhubung membentuk sebuah struktur yang terdiri dari jaringan-jaringan halaman.

2.6 Leaflet

Leaflet adalah sebuah library JavaScript Open Source yang mempermudah proses pembuatan peta pada halaman web (Tanjaya et al., 2016). Leaflet menyediakan banyak fitur pemetaan salah satunya Interactive Choropleth Map atau peta tematik yang interktif dan bisa menampilkan ruangan pada tempat tertentu. Selain fitur-fitur yang kuat, Leaflet juga memiliki dokumentasi yang lengkap dan komunitas yang aktif. Pengembang dapat dengan mudah menemukan bantuan, tutorial, dan contoh penggunaan Leaflet untuk membantu mereka dalam mengimplementasikan peta interaktif sesuai dengan kebutuhan proyek mereka.

2.7 Framework Laravel

Framework merupakan suatu kerangka kerja yang disediakan untuk mempermudah pembangunan suatu sistem sehinga pembangunan sistem tidak perlu melakukan perancangan dari nol (Sinaga & Samsudin, 2021). Salah satu Framework PHP yang terkenal yaitu Laravel. Laravel merupakan kerangka

aplikasi web yang memilik sintak yang indah dan mudah dipahami (Otwell, 2023). Laravel juga sudah mendukung sistem *Model View Controller* (MVC).

2.8 Konsep Mode View Controller (MVC)

Model View Controller (MVC) terdiri dari tiga bagian yang masing masing memiliki peran unik, yaitu Model sebagai pengelola data aplikasi, View sebagai penyajian antarmuka pengguna, dan Controller sebagai pengatur proses inputan user untuk ditampilkan di View (Pratama & Paramita, 2020).

2.9 Unifed Model Leanguage (UML)

UML adalah sebuah bahasa standar dalam industri untuk visualisasi, merancang, dan mendokumentasikan sistem perangkat lunak. UML menawarkan sebuah standar untuk merancang model sebuah sistem dan telah menjadi pilihan utama dalam industri untuk membantu menggambarkan dan memahami sistem perangkat lunak (Dharwiyanti & Wahono, 2003). Berikut adalah beberapa contoh jenis diagram dalam UML:

2.10 Metode Pengembangan Sistem

Waterfall (air terjun) merupakan metode pengembangan sistem di mana analis dan pengguna bekerja sama untuk merumuskan suatu kegiatan secara berurutan dari satu fase ke fase berikutnya (Bahar et al., 2011). Waterfall memiliki keunggulan yang terletak pada kemampuannya untuk mengidentifikasi kebutuhan pengguna jauh sebelum kegiatan pemrograman dimulai dan membatasi perubahan kebutuhan pengguna saat proyek sudah dimulai.

Kelemahan metode *waterfall* yaitu cenderung sulit untuk menangani perubahan kebutuhan pengguna yang muncul selama proses pengembangan.

Karena setiap fase harus diselesaikan sebelum melanjutkan ke fase berikutnya, perubahan yang dibutuhkan seringkali sulit atau mahal untuk diimplementasikan setelah fase-fase awal selesai. Maka rancangan sistem harus benar-benar dipersiapkan secara matang sebelum tahap pengkodean dimulai.

Menurut Bahar et al. (2011) waterfall memiliki tahapan utama dalam pemrosesannya yaitu:

1. Analisis

Tahap ini melibatkan pemahaman mendalam tentang kebutuhan pengguna dan tujuan proyek. Analis mengumpulkan informasi yang diperlukan untuk merumuskan persyaratan sistem dengan jelas dan lengkap.

2. Perancangan

Pada tahap ini, perancangan sistem secara keseluruhan dilakukan berdasarkan persyaratan yang telah didefinisikan sebelumnya. Perancangan ini mencakup desain arsitektur, desain antar muka pengguna, dan perencanaan modul dan komponen sistem.

3. Implementasi

Tahap ini melibatkan pembuatan kode program berdasarkan rancangan yang telah dibuat. Tim pengembang mulai mengimplementasikan modulmodul yang telah direncanakan dan melakukan pengujian unit untuk memastikan keberhasilan implementasi.

4. Pengujian

Tahap pengujian dilakukan untuk mengidentifikasi dan memperbaiki kesalahan atau bug yang ada.

2.10.1 Use Case Diagram

Use Case Diagram merupakan gambaran dari fungsionalitas yang diharapkan dari suatu sistem, yang menekankan pada "apa" yang dilakukan oleh sistem, bukan "bagaimana" melakukannya. Diagram ini merepresentasikan interaksi antara aktor dengan sistem, dimana setiap use case merepresentasikan suatu skenario atau fungsionalitas tertentu dari perspektif pengguna

Tabel 2.2 Simbol *Use Case Diagram*

No	Simbol (Nama)	Deskripsi	
1	Aktor	Aktor dalam sebuah sistem adalah entitas yang	
		terlibat dalam interaksi dengan sistem, dan dapat	
	£	berupa pengguna, sistem lain, atau perangkat lain	
		yang terlibat dalam penggunaan sistem yang	
		sedang dirancang.	
2	Use case	Use case dalam UML menggambarkan interaksi	
		antara aktor dengan sistem dan menunjukkan	
		fungsionalitas yang diharapkan dari sistem, bukan	
		cara kerja sistem.	
3	Association	Dalam use case diagram, hubungan antara aktor	
	< <include>></include>	dan <i>use case</i> ditunjukkan untuk menggambarkan	
	·>	bagaimana aktor terlibat dalam sebuah use case.	
4	Include	Include menunjukkan bahwa sebuah use case	
		termasuk bagian dari <i>use case</i> lain, artinya <i>use case</i>	
	──	yang disertakan (included) akan selalu dieksekusi	
		jika <i>use case</i> induknya dijalankan	

5	Extend	Extend menunjukkan bahwa sebuah use case
	conton do	memiliki aksi opsional atau alternatif yang hanya
	< <extend>></extend>	dieksekusi pada kondisi tertentu, dan bisa
		menambahkan atau memperluas fungsionalitas dari
		use case utama.
6	Generalisasi	Generalisasi adalah jenis hubungan antara dua use
		case di mana satu use case (yang disebut child use
		case) mewarisi sifat dan perilaku dari use case yang
		lain (yang disebut parent use case).

2.10.2 Class Diagram

Class diagram adalah suatu bentuk diagram pada pemodelan objek yang digunakan untuk menggambarkan struktur dan deskripsi dari class, package, objek, dan hubungan antara elemen-elemen tersebut, termasuk di dalamnya adalah hubungan containment, pewarisan, asosiasi, dan lain-lain

Tabel 2.3 Class Diagram

No	Jenis	Simbol	Deskripsi
1	Class		Merepresentasikan suatu objek dengan atribut, operasi dan relasi
2	Interface		Mirip dengan kelas tetapi hanya memiliki tanda tangan metode dan tidak ada implementasi
3	Association		Menunjukkan hubungan antara dua kelas yang tidak terikat

4	Generalization	hubungan antara dua class di mana satu
		class (subclass) diwarisi sifat dan perilaku
		dari class yang lain (superclass)
5	Aggregation	Menunjukkan hubungan antara kelas
		induk dan kelas anak, di mana kelas anak
		dapat terikat ke beberapa kelas induk

2.10.3 Activity Diagram

Activity diagram adalah sebuah state diagram yang khusus digunakan untuk menggambarkan sebagian besar state sebagai action dan sebagian besar transisi dipicu oleh selesainya state sebelumnya melalui internal processing (Dharwiyanti & Wahono, 2003). Activity diagram menggambarkan aliran aktivitas dalam sistem yang dirancang, termasuk awal, kemungkinan keputusan yang terjadi, dan akhir dari setiap aliran. Diagram ini juga mampu menggambarkan proses paralel yang terjadi pada beberapa aktivitas.

Tabel 2.4 Activity Diagram

No	Nama	Simbol	Deskripsi
1	Satatus Awal		Status awal aktivitas sistem,sebuah diagram aktivitas memiliki sebuah
			status awal.
2	Aktivitas	Aktivitas	Aktivitas yang dilakukan sistem, aktivitas biasanya diawali dengan kata kerja.

3	Percabangan		Asosiasi percAbungan dimana jika ada
			pilihan aktivitas lebih dari satu
4	Penggabungan		Asosiasi penggabungan dimana lebih
			dari satu aktivitas digabungkan menjadi
			satu
5	Tabel		Suatu file komputer dari mana data bisa
			dibaca atau direkam selama kejadian
			bisnis
6	Dokumen		Menunjukan dokumen sumber atau
			laporan
7	Status Akhir		Status akhir yang dilakukan sistem,
			sebuah diagram aktivitas memiliki
			sebuah status akhir.
8	Swimlane	.,	Memisahkan organisasi bisnis yang
		nama swimlane	bertanggung jawab terhadap aktivitas
			yang terjadi

2.11 Pengujian ISO 25010

ISO 25010 adalah sebuah standar internasional yang digunakan untuk mengevaluasi kualitas perangkat lunak dan sistem (Peters & Aggrey, 2020). ISO 25010 ini juga dikenal sebagai model *Systems and Software Quality Requirements*

and Evaluation (SQuaRE). Model ISO 25010 mencakup delapan karakteristik kualitas yang secara visual diperlihatkan dalam gambar 2.1 berikut:

Gambar 2.1 Visualisasi Karakteristik ISO 25010

(Sumber: ISO 25010 software and data quality)

Dari delapan karakteristik kualitas aplikasi di atas, penulis menetapkan hanya tiga karakteristik yang dijadikan sebagai variabel pengujian peda penelitian ini antara lain: *Functional Suitability*, *Performance Efficiency*, dan *Usability*. Penjelasan masing-masing karakteristik tersebut akan dijabarkan pada tabel 2.5

Tabel 2.5 Karakteristik ISO 25010

No	Karakteristik	Sub Karakteristik	Deskripsi
1	Functional	Functional	Kemampuan sistem untuk
	Suitability	completeness	mencakupan fungsi mengakomodasi
			semua tugas dan tujuan pengguna
			yang telah ditetapkan.
		Functional	Kemampuan sistem sebagai akurasi
		correctness	dan presisi hasil yang diberikan oleh
			produk atau sistem sesuai dengan
			tingkat kebutuhan yang diinginkan.

		Functional	Kemampuan sistem untuk mengukur
		appropriateness	seberapa efektifitas fungsi-fungsi
			mempermudah pencapaian tugas dan
			tujuan yang spesifik
2	Performance	Time behaviour	Kemampuan sistem untuk mengukur
	Efficiency		seberapa baik respons dan waktu
			pemrosesan, serta kecepatan
			throughput dari suatu produk atau
			sistem, saat digunakan dalam
			menjalankan fungsinya, memenuhi
			persyaratan yang telah ditetapkan.
		Resource	Kemampuan sistam untuk mengukur
		utilization	seberapa sesuai jumlah dan jenis
			sumber daya yang digunakan oleh
			suatu produk atau sistem saat
			beroperasi, dengan memenuhi
			persyaratan yang telah ditetapkan.
		Capacity	Kemampuan sistem untuk mengukur
			seberapa besar kapasitas maksimum
			suatu produk atau parameter sistem
			dalam memenuhi persyaratan yang
			telah ditetapkan.
3	Usability	Appropriateness	Kemampuan sistem untuk mengukur
		recognizability	sejauh mana kesesuaian produk atau

		sistem dengan kebutuhan pengguna
		dapat dikenali oleh mereka.
	Learnability	Kemampuan sistem untuk membantu
		pengguna mencapai tujuan
		pembelajaran dengan efektivitas,
		efisiensi, keamanan, dan kepuasan
		dapat dievaluasi.
	Operability	Kemampuan sistem untuk mengukur
		sejauh mana suatu produk atau sistem
		memiliki karakteristik yang
		memungkinkan pengoperasian dan
		pengendalian yang mudah.
	User error	Kemampuan sistem untuk mengukur
	protection	seberapa jauh sistem memberikan
		perlindungan kepada pengguna agar
		terhindar dari kesalahan yang
		mungkin terjadi.
	User interface	Kemampuan sistem untuk mengukur
	aesthetics	seberapa efektif antarmuka pengguna
		dalam menciptakan pengalaman
		interaktif yang menyenangkan dan
		memuaskan bagi para pengguna.
	Accessibility	Kemampuan sistem untuk mengukur
		sejauh mana kemampuan dan

karakteristik yang paling luas dari
pengguna dapat dimanfaatkan dalam
mencapai tujuan tertentu dalam suatu
konteks penggunaan, dengan
menggunakan suatu produk atau
sistem.

2.11.1 Skala Likert

Skala Likert merupakan jenis skala yang sangat sederhana dan mudah digunakan. Skala ini menggunakan beberapa pernyataan untuk mengukur perilaku individu dengan memberikan respon pada 5 pilihan yang tersedia, yaitu sangat setuju, setuju, tidak memutuskan (netral), dan tidak setuju, serta sangat tidak setuju (Budiaji, 2013).