BAB II LANDASAN TEORI

2.1 Tinjauan Pustaka

Pada penelitian ini peneliti menggunakan beberapa tinjauan Pustaka yang dapat mendukung penelitian ini, berikut tinjauan pustaka yang digunakan penelitian dapat dilihat pada Tabel 2.1

Tabel 1.1 Tinjauan pustaka

	T	1	T		
Nomor Litiatur	Penulis	Tahun	Judul	Hasil	
Tinjauan	Partaonan	2020	Pengaruh	Tujuan penelitian ini adalah	
Pustaka	Harahap		Temperatur	membandingkan 2 merk panel	
1			Permukaan	surya jenis <i>polycrystalline</i> .	
			Panel Surya	Metode penelitian sendiri	
			Terhadap	dengan cara melakukan	
			Daya Yang	Penelitian dan pengujian	
			Dihasilkan panel sel surya berdasarka		
			Dari intensitas dan temperat		
			Berbagai	permukaan panel surya pada	
			Jenis Sel	berbagai jenis sel surya.	
			Surya	Berdasarkan penelitian yang	
				dilakukan, diperoleh beberapa	
				kesimpulan bahwa semakin	
				tinggi intensitas lux maka	
				semakin tinggi pula kinerja	

				panel surya. Perbedaan dari
				penelitian yang dilakukan
				oleh penulis yaitu penulis
				melakukan pengukuran nilai
				radiasi matahari pada panel
				surya jenis monocrystalline,
				guna mengetahui pengaruh
				penyerapan radiasi terhadap
				efisiensi panel surya serta
				daya yang dihasilkan dari
				panel surya sebagai sumber
				energi listrtik pada tanaman
				aeroponik.
Tinjauan	Bambang	2018	Efisiensi	Tujuan dari penelitian adalah
Pustaka	Hari		Penggunaan	untuk memberikan gambaran
2	Purwoto,		Panel Surya	yang jelas tentang efisiensi
	Jatmiko,		Sebagai	penggunaan panel surya
	Muhamad		Sumber	sebagai sumber energi
	Alimul		Energi	alternatif jika dibandingkan
	Fadilah,		Alternatif	dengan penggunaan
	Ilham Fahmi			generator/Genset sebagai
	Huda			sumber energi untuk peralatan
				listrik. Metode dari penelitian
				ini diawali dengan

				pengumpulan komponen yang
				dibutuhkan untuk melakukan
				penelitian. Dari hasil
				penelitian dapat disimpulkan
				penggunaan panel surya
				sebagai sumber energi
				alternatif sebagai pensuplai
				beban listrik lebih efisien jika
				dibandingkan dengan
				menggunakan genset sebagai
				sumber energi. Perbedaan
				penelitian yang dilakukan
				penulis yaitu penulis
				menggunakan panel surya
				sebagai sumber energi listrik
				untuk menghidupkan pompa
				air pada tanaman aeroponik.
Tinjauan	Andi	2021	Pengaruh	Tujuan dari penelitian ini
Pustaka	Makkulau,		Intensitas	adalalah memaksiamalkan
3	Samsurizal,		Matahari Terhadap	intensitas matahari yang
	Miftahul		Karakteristi	diterima oleh panel surya
	Fikri,		k Sel Surya	dengan sudut kemiringan
	·		Jenis	
	Christiono		Polycristalli	yang tepat. Metode yang
			ne	digunakan pada penelitian ini
		1	1	

			Menggunak	menggunakan beberapa
			an Regresi	tahapan untuk menganalisis
			Linear	pengaruh intensitas matahari
				terhadap karakteristik panel
				surya jenis polycrystalline
				yang diawali dengan
				pengumpulan data dan
				informasi berupa materi yang
				dibutuhkan. Sehingga dapat
				disimpulkan bahwa
				perubahan sudut kemiringan
				pada modul surya juga
				berperan penting dalam
				mempengaruhi kinerja dari
				modul surya jenis
				polycristalline. Perbedaan
				dari penelitian yang dilakukan
				penulis yaitu penulis
				menggunakan panel surya
				jenis monocrystalline 50 Wp.
Tinjauan	Putu Pawitra	2021	Analisa	Tujuan dari penelitian ini
Pustaka	Teguh		Radiasi	adalah untuk mengetahui
4	Dharma		Sinar	pengaruh intensitas cahaya
	Priatam,		Matahari	terhadap keluaran energi
	·		•	

Muhammad	Terhadap	listrik. Metode penelitian
Fitra	Panel Surya	mengukur intensitas matahari
Zambak,	50 WP	dengan <i>lux meter</i> dan
Suwarno,		mengukur arus listrik yang
Partaonan		dihasilkan panel surya jenis
Harahap		polycrystalline, Dari hasil
		rata-rata pengukuran
		intensitas matahari selama 2
		hari, dapat disimpulkan bahwa
		Semakin cerah matahari dan
		selama tidak tertutup awan
		maka nilai intensitas matahari
		semakin besar. Perbedaan dari
		penelitian yang dilakukan
		oleh penulis yaitu penulis
		melakukan pengukuran nilai
		radiasi matahari pada panel
		surya jenis monocrystalline,
		guna mengetahui pengaruh
		penyerapan radiasi terhadap
		efisiensi panel surya serta
		daya yang dihasilkan dari
		panel surya sebagai sumber
		<u> </u>

				energi listrtik pada tanaman	
				aeroponik.	
Tinjauan	Muhammad	2021	Otomatisasi	Tujuan penelitian ini yaitu	
Pustaka	Al Husaini,		Monitoring	mengoptimalkan tingkat	
5	Arief		Metode	pertumbuhan tanaman metode	
	Zulianto dan		Budidaya	hidroponik berbasis IoT pada	
	Ashwin		Sistem	tanaman hidroponik. Metode	
	Sasongko.		Hidroponik	penelitian yang digunakan	
			Dengan	yaitu penelitian terapan. Hasil	
			Internet Of	dari penelitian menunjukkan	
			Things (Iot)	bahwa penggunaan daya	
			Berbasis	menggunakan panel surya	
			Android	menghasilkan selisih	
			Mqtt Dan	perbandingan tingkat	
			Tenaga	pertumbuhan tanaman yang	
			Surya.	lebih baik berdasarkan	
				parameter jumlah daun.	

2.2 Radiasi

Radiasi adalah proses perambatan energi (panas) dalam bentuk gelombang elektromagnetik tanpa menggunakan zat perantara. Energi matahari dapat mencapai permukaan bumi melalui radiasi (pancaran) karena terdapat ruang hampa (tidak ada zat perantara) antara bumi dan matahari. Sedangkan gelombang elektromagnetik merupakan bentuk gelombang yang merambat berupa komponen medan listrik dan medan magnet, sehingga dapat menyebar dengan kecepatan yang sangat tinggi

tanpa memerlukan zat atau medium perantara (Pawitra Teguh Dharma Priatam et al., 2021).

Menurut Maulana et al., (2021) perhitungan radiasi menggunakan parameter intensitas cahaya matahari yang masih dalam satuan lux harus dikonversi menjadi radiasi dalam satuan W/m^2 . Adapun persamaan untuk mengkonversikan dari satuan lux menjadi W/m^2 dapat dilihat pada persamaan 2.1

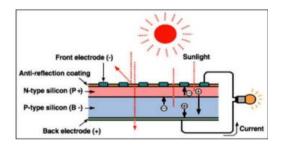
$$(1 Lux = 0.0079 \text{ W/m}^2)....$$
 (2.1)

Pada persamaan 2.1 dapat diketahui bahwa:

Lux = intensitas cahaya

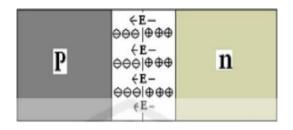
 $W/m^2 = Radiasi$

2.3 Temperatur


Temperatur atau suhu merupakan besaran yang menyatakan derajat suatu benda atau kondisi sekitar. Pada penelitian ini temperatur yang diukur ialah temperatur pada panel surya dan temperature lingkungan sekitar. Menurut Partonan Harahap, (2020) Pada malam hari, nilai temperatur pada panel surya sama dengan temperatur lingkungan sekitarnya, namun pada saat siang hari, saat terik matahari, nilai temperatur panel surya dapat mencapai 30°C atau lebih di atas temperatur lingkungan sekitar.

2.4 Aeroponik

Aeroponik adalah jenis hidroponik yang menggunakan udara sebagai media utama dan memberikan nutrisi dan air melalui semprotan kabut buatan. Teknik ini menempatkan tanaman sedemikian rupa hingga akar diposisikan tergantung diudara dan ditopang oleh *styrofoam*. Nutrisi diperoleh dengan cara pengkabutan secara merata pada daerah perakaran. Akar tanaman yang ditanam menggantung akan menyerap larutan nutrisi tersebut (Asniati et al., 2019)


2.5 Prinsip Kerja Panel Surya

Sebuah panel surya terdiri dari beberapa sel surya yang disusun sedemikian rupa untuk mencapai keluaran yang diinginkan. Dari jumlah sel surya itu, sinar matahari dapat diubah menjadi listrik arus searah. Dengan menambahkan baterai yang terhubung ke panel surya, maka daya hasil konversi cahaya matahari menjadi listrik dapat disimpan sebagai cadangan energi listrik. Sederhananya, sel surya terdiri dari bahan semikonduktor tipe-P dan N. Jika P-N *junction* ini terkena sinar matahari maka akan terjadi aliran elektron. Aliran elektron inilah yang disebut aliran arus listrik. Adapun proses pengubahan energi matahari menjadi energi listrik pada sel surya dapat dilihat pada Gambar 2.1

Gambar 1.1 Proses Pengubahan Energi Matahari Menjadi Energi Listrik Pada Sel Surya. (Partonan Harahap, 2020)

Pada gambar 2.1 hole secara terus menerus meninggalkan tipe-p dan menyebabkan ion negatif tetap berada di dekat sambungan. begitu juga dengan elektron tipe-n yang keluar menyebabkan ion positif tetap berada di dekat sambungan. Hal ini menghasilkan keadaan muatan negatif di daerah tipe-p dan keadaan muatan positif di daerah tipe-n dekat sambungan sampai ada daerah langsung di persimpangan p-n dimana tidak ada muatan bebas, yang disebut daerah pengosongan depletion region. Adapun medan listrik di daerah pengosongan dapat dilihat pada Gambar 2.2

Gambar 1.2 Medan Listrik Di Daerah Pengosongan Dari Kanan Ke Kiri (Partonan Harahap, 2020)

Pada gambar 2.2 keadaan muatan negatif di daerah tipe-p dan keadaan muatan positif di daerah tipe-n dekat sambungan sampai ada daerah langsung di persimpangan p-n dimana tidak ada muatan bebas, yang disebut daerah pengosongan *depletion region*.

2.6 Jenis-jenis Panel Surya

Panel surya yang digunakan memiliki beberapa jenis dan memiliki efisiensi yang berbeda-beda diantaranya:

1. Polly-crystalline

Adapun gambar dari panel surya jenis *Poly-Crystalline* dapat dilihat pada Gambar 2.3

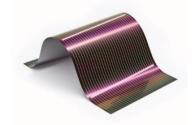
Gambar 1.3 Panel Surya Jenis *Poly-Crystalline* (Partonan Harahap, 2020)

Pada gambar 2.3 jenis panel surya *Poly-Crystalline* dibuat dengan meleburkan silikon dalam tungku keramik dan kemudian didinginkan secara perlahan untuk membuat campuran silikon yang akan timbul diatas lapisan

silikon. Sel-sel ini kurang efisien dari pada sel monokristalin (efisiensi 18%) tetapi biayanya lebih murah (Partonan Harahap, 2020)

2. Mono-crystalline

Adapun gambar dari panel surya jenis *Mono-crystalline* dapat dilihat pada Gambar 2.4



Gambar 1.4 Panel surya jenis *mono-crystalline* (Partonan Harahap, 2020)

Pada gambar 2.4 jenis panel surya ini terbuat dari silikon monokristalin yang diperoleh dari peleburan silikon dalam bentuk bujur. *Mono-crystalline* dapat dibuat setelah 200 mikron, dengan efisiensi sekitar 24%.(Partonan Harahap, 2020)

3. Copper Indium Diselenide

Jenis panel surya *Copper Indium Diselenide* menggunakan bahan dari film tipis poly-crystalline. Adapun gambar dari panel surya jenis *Copper Indium Diselenide* yang memiliki Nilai efisiensi 17.7%. Adapun penel *Copper Indium Diselenide* dapat dilihat pada Gambar 2.5

Gambar 1.5 Panel Sel Jenis *Copper Indium Diselenide* (Partonan Harahap, 2020)

2.7 Komponen Utama PLTS

Pada penelitian ini peneliti memerlukan komponen-komponen yang mendukung untuk pembuatan alat Pembangkit Listik Tenaga Surya (PLTS) pada tanaman aeroponik sebagai berikut:

2.7.1 Panel Surya

Panel surya merupakan pembangkit listrik yang memanfaatkan sinar matahari dalam bentuk radiasi matahari, yang kemudian diubah menjadi energi listrik melalui sel surya (*photovoltaic*). Adapun spesifikasi panel surya yang digunakan pada penelitian ini dapat dilihat pada Tabel 2.2

Tabel 1.2 Spesifikasi Panel Surya 50 Wp Mono-crystalline

No	Parameter			Satuan	
1	Model Type			BCT50M-12	
2	Maximum Power (Pn			50 W	
3	Open-Circuit Voltage Voc (Voc)			21.6 V	
4	Short-Circuit Current Isc (Isc)			3.23 A	
5	Voltage at Pmax (Vmp)			17.2 V	
6	Current at Pmax (Imp)			2.91 A	
7	Normal Operating Cell Temp (Tnoct)			45°C	
10	Maximum system Voltage			1000 V DC	
11	Weight			3.16 kg	
All technical data at standard test condition					
$AM = 1.6$ $E = 1000 \text{ W/m}^2$			Tc=25°C		

Panel surya *mono-crystalline* merupakan jenis panel yang paling efisien dengan menggunakan teknologi terkini yang mampu menghasilkan daya listrik luas serta paling tinggi.(Hari Purwoto et al., 2018).

Untuk mencari total beban dan menentukan ukuran kapasitas panel surya dapat dihitung dengan menggunakan persamaan (2.2) dan (2.3).

Mencari total beban listrik harian

Beban Pemakaian = Daya x Lama Pemakaian(2.2)

Menentukan ukuran kapasitas panel surya sebagai berikut:

Kapasitas panel surya =
$$\frac{Total\ Beban\ Pemakain\ Harian}{n\ Baterai+Insolasi\ Panel\ Surya} \dots (2.3)$$

2.7.2 Solar Charge Control

Solar Charge Controller (SCC) merupakan salah satu komponen sistem pembangkit listrik tenaga surya yang berfungsi sebagai pengatur arus listrik yang masuk maupun keluar dari panel surya, mencegah pengisian baterai yang berlebihan, Solar Charge Controller juga berfungsi mengatur tegangan dan arus dari panel surya ke baterai. Adapun Solar Charge Controller (SCC) dapat dilihat pada Gambar 2.6

Gambar 1.6 Solar Charge Controller (SCC)

Pada gambar 2.6 merupaka *Solar Charge Controller* (SCC) digital pwm stec stc 30a 12/24v. *Solar Charge controller* menggunakan teknologi *Pulse Width Modulation* (PWM) untuk mengatur fungsi pengisian baterai dan pelepasan arus dari baterai ke beban. Modul surya 12 volt biasanya memiliki tegangan keluaran antara 16–21 volt. Jadi, tanpa *solar charge controller*, baterai akan rusak akibat *overcharging* dan ketidakstabilan tegangan. Baterai biasanya di*-charge* pada tegangan 14- 14.7 Volt.

2.7.3 Aki (baterai)

Baterai merupakan alat yang berfungsi menyimpan dan menyuplai energi listrik melalui proses elektrokimia. Adapun Aki (baterai) dapat di pada Gambar 2.7

Gambar 1.7 Aki (baterai)

Pada gambar 2.7 baterai yang digunakan pada penelitian ini yaitu VRLA *deep cycle* yang biasanya sering digunakan pada system panel surya, baterai ini mempunya tegangan sebesar 12 V dengan kapasitas 9 Ah.

2.8 Sudut Kemiringan

Intensitas cahaya matahari yang diterima oleh panel surya dapat dimaksimalkan dengan cara memasang panel surya pada sudut kemiringan yang tepat sehingga diperoleh keluaran daya yang maksimal. Menurut Makkulau et al., (2021) perubahan sudut kemiringan pada panel surya berperan penting dalam mempengaruhi kinerja pada panel surya.

Menurut Bagus Ramadhani, (2018) Sudut kemiringan atau sudut inklinasi sendiri ditentukan oleh garis lintang lokasi. Di tempat yang terletak di dekat khatulistiwa seperti Indonesia, datangnya sinar matahari hampir tegak lurus. Oleh sebab itu sudut kemiringan 0° merupakan sudut yang paling optimal untuk menangkap radiasi langsung. Namun pada sudut 0° atau sudut yang relatif datar dapat menyebabkan genangan air atau penumpukan debu pada permukaan panel. Oleh karena itu, dianjurkan untuk menempatkan panel surya dengan sudut kemiringan minimal 10° untuk mendapatkan mekanisme pembersihan diri,

terutama pada saat hujan. Adapun sudut kemiringan panel surya dapat dilihat pada Gambar 2.8

Gambar 1.8 Sudut Kemiringan Panel Surya

Pada gambar 2.8 merupakan sudut kemiringan pada panel surya, pengukuran sudut sendiri menggunakan aplikasi yang ada pada *smartphone*. Adapun sudut yang digunakan pada penelitian ini adalah sudut 15°.

1.9 Sudut azimut

Bagus Ramadhani, (2018) Sudut azimut merupakan arah datangnya sinar matahari. Panel surya harus diatur arah hadapnya untuk menghadap khatulistiwa agar mendapatkan hasil energi yang optimal. Adapun sudut azimuth dapat dilihat Gada gambar 2.9

Gambar 1.9 Sudut Azimut

Pada gambar 2.9 merupakan sudut azimut yang digunakan pada penelitian yaitu 74° menghadap arah datangnya matahari.

2.10 Lux meter

Lux meter adalah alat yang berfingsi untuk mengukur intensitas cahaya dengan menggunakan satuan lux. Adapun alat ukur lux meter dapat dilihat pada Gambar 2.10

Gambar 1.10 Alat ukur intensitas cahaya *lux* meter (Suoth et al., n.d.)

Pada gambar 2.10 merupakan alat ukur intensitas cahaya dengan satuan *lux*. Pada penelitian ini *lux* meter yang digunakan bertipe AS803 yang digunakan untuk mengukur intensitas cahaya matahari.

2.11 Thermometer

Thermometer adalah alat yang berfungsi untuk mengukur perubahan suhu/temperatur dengan satuan derajat. Adapun alat ukur theremometer dapat dilihat pada Gambar 2.11

Gambar 1.11 Alat ukur Thermometer

Pada gambar 2.11 merupakan alat ukur thermometer yang bertipe HTC-2 yang digunakan dalam penelitian untuk pengukuran suhu yang ada pada panel surya dan lingkungan sekitar.

2.12 Multitester

Multitester ialah alat ukur listrik yang berfungsi megukur besaran nilai komponen eletronika. Selain itu multitester juga digunakan untuk mengetahui keadaan sebuah komponen (Savitri Puspaningrum et al., 2020). Adapun gambar dari multitester dapat dilihat pada Gambar 2.12

Gambar 1.12 Multitester

Pada gambar 2.12 merupakan komponen *multitester* tipe ZOYI ZT-102A yang digunakan dalam penelitian untuk mengukur nilai tegangan dan arus yang dihasilkan oleh panel surya.