BAB II LANDASAN TEORI

2.1 Penelitian Terdahulu

Sebagai bahan pertimbangan dalam penelitian ini, disajikan beberapa hasil dari penelitian terdahulu sebagai berikut:

Tabel 2.1 **Penelitian terdahulu**

No	Peneliti	Judul	Kesimpulan	
1	Alita & Isnain,	Pendeteksian	hasil pengujian analisis sentimen	
	2020	Sarkasme Pada	dikombinasikan dengan	
		Proses Analisis	pendeteksian sarkasme	
		Sentimen	memberikan nilai akurasi	
		Menggunakan tertinggi pada pengujian		
		Random Forest	cross validation dan nilai presisi,	
		Classifier	recall dan F1score terbaik	
			dilakukan melalui 10-Fold nilai	
			recall 62,45% dan nilai F1Score	
			62,32%. Nilai ratarata yang	
		didapatkan dari pengujian 2-		
			cross validation hingga 10-Fold	
			cross validation adalah nilai	
			akurasi sebesar 77,22 %, nilai	
			presisi sebesar 60,39%, nilai	
			recall sebesar 58,90 % dan nilai	
			F1score sebesar 58,71 %.	
2	Astari,	Analisis Sentimen	Tujuan dari penelitian ini adalah	
	Divayana dan	Dokumen Twitter	memperoleh analisis dokumen	
	Indrawan	Mengenai Dampak	text untuk mendapatkan	
	(2020)	Virus Corona	sentimen positif atau negatif	
		Menggunakan	masyarakat. Data yang	
		Metode Naive Bayes	digunakan merupakan dokumen	
		Classifier	tweet dari Twitter mengenai	

Tabel 2.1 **Penelitian terdahulu lanjutan**

No	Peneliti	Judul Kesimpulan		
			dampak virus Corona. Metode	
			yang digunakan untuk klasifikasi	
			dalam penelitian ini adalah	
			Metode Naive Bayes Classifier.	
			Hasil penelitian menunjukkan	
			metode Naive Bayes mampu	
			mengklasifikasi dokumen tweet	
			dengan akurasi 67% dan error	
			rate sebesar 33%. Percobaan	
			dengan menggunakan 3 jumlah	
			data berbeda (100, 200, dan 500)	
			menghasilkan selisih nilai	
			akurasi yang tidak jauh berbeda	
			yaitu 0,02. Hal ini menunjukkan	
			metode Naive Bayes	
			menghasilkan performa yang	
			stabil.	
3	Hennie	Analisis Sentimen	Penelitian ini bertujuan untuk	
	Tuhuteru	Masyarakat	mengetahui bagaimana sentimen	
	(2020)	Terhadap	masyarakat terhadap rencana	
		Pembatasan Sosial	penerapan PSBB di Kota Ambon	
		Berksala Besar	melalui tweet dan komentar di	
		Menggunakan	platform media sosial	
		Algoritma Support	menggunakan analisis sentimen.	
		Vector Machine	Hasil dari penelitian menunjukan	
			sentimen positif sebesar 28%,	
			sentimen negatif sebesar 27%,	
			dan sentimen netral sebesar 45%.	
			Dapat disimpulkan bahwa	
			sentimen	

Tabel 2.1 **Penelitian terdahulu lanjutan**

No	Peneliti	Judul	Kesimpulan		
			masyarakat terhadap rencana		
			penerapan PSBB di Kota Ambon		
			berdasarkan komentar di media		
			sosial cukup berimbang antara		
			sentimen positif dan negatif serta		
			didominasi komentar dengan		
			sentimen netral		
4	Muhammad	Analisis Sentimen	Perlu suatu analisis sentimen		
	Syarifuddin	Opini Publik	opini masyarakat guna		
	(2020)	Mengenai Covid-19	menyelaraskan dan memberi		
		Pada Twitter	pandangan baru mengenai suatu		
		Menggunakan	isu tentang COVID-19, metode		
		Metode Naïve Bayes	yang digunakan adalah algoritma		
		Dan Knn	Naïve Bayes dan KNN,		
			penelitian ini berfokus pada		
			perbandingan hasil klasifikasi		
			metode Naïve Bayes dan KNN,		
			serta mengetahui kecenderungan		
			opini masyarakat di twitter.		
			Subjek diambil menggunakan		
			API twitter sebanyak 1098 opini		
			dengan kata kunci "COVID-19".		
			Naïve Bayes memiliki nilai lebih		
			tinggi, salah satunya adalah		
			tingkat accuracy sebesar 63.21%,		
			sedangkan metode KNN sebesar		
			58.10%, dan didapatkan pula		
			kecenderungan		

Tabel 2.1 Penelitian terdahulu lanjutan

No	Peneliti	Judul	Kesimpulan
			opini masyarakat di twitter
			condong positif, hal tersebut
			dapat dilihat dari jumlah opini
			positif sebesar 610 sedangkan
			negatif 488, ditunjang dengan
			hasil pengujian precision di
			metode Naïve Bayes dengan nilai
			positif lebih inggi dari pada
			negatif yaitu 66.40%: 58.94%
5	Naomi	Implementasi	Dalam penerapannya
	Chatrina	Metode Naive Bayes	pelaksanaan pembelajaran jarak
	Siregar, Riki	Classifier (NBC)	jauh menuai banyak komentar
	Ruli A.	Pada Komentar	seperti kendala kurangnya
	Siregar, M.	Warga Sekolah	pemahaman terhadap materi
	Yoga Distra	Mengenai	yang disampaikan dan
	Sudirman	Pelaksanaan	sebagainya. Untuk itu,
		Pembelajaran Jarak	diperlukan adanya sistem yang
		Jauh (PJJ)	dapat mengelola komentar
			tersebut, data yang digunakan
			adalah data komentar tentang
			pelaksanaan pembelajaran jarak
			jauh. Kemudian data akan
			diproses melalui tahapan
			preprocessing text dan akan
			diklasifikasi menggunakan
			metode Naïve Bayes Classifier
			untuk menetukan komentar
			termasuk dalam kategori positif,
			negatif, atau netral.

Tabel 2.1 Penelitian terdahulu lanjutan

No	Peneliti	Judul	Kesimpulan	
6	Fahmi	Klasifikasi Data Set	Di awal tahun 2020 dunia	
	Syarifuddin,M	Virus Corona	kesehatan dihebohkan dengan	
	uhammad	Menggunakan	ditemukannya virus baru yang dikenal berasal dari virus ini di	
	Misdram,	Metode Naïve Bayes		
	Anang Aris	Classifier	Wuhan, China. Hingga saat ini,	
	Widodo		penanganan pasien Covid-19	
			masih terus dilakukan. Hal ini	
			karena jumlah pasien terus	
			bertambah setiap harinya. Untuk	
			itu diperlukan suatu aplikasi yang	
			dapat memonitoring angka	
			kesembuhan pasien Covid-19.	
			Sistem ini dibangun dengan	
			menggunakan metode Naïve	
			Bayes Classification (NBC).	
			NBC Metode adalah metode	
			yang digunakan untuk klasifikasi	
			dan dapat memprediksi peluang	
			masa depan berdasarkan	
			pengalaman masa lalu, hasil	
			pengujian menunjukkan bahwa	
			dengan menggunakan Metode	
			Nive Bayes memiliki akurasi	
			yang cukup baik yaitu 84%.	
7	Imam	Implementasi	Berbagai media digunakan salah	
	Kurniawan, ,	Metode K-Means	satunya adalah Twitter,	
	Ajib Susanto	dan Naïve Bayes	masyarakat menyampaikan	
		Classifier untuk	komentar positif dan negatif	
		Analisis Sentimen	bahkan cenderung "kampanye	

Tabel 2.1 **Penelitian terdahulu lanjutan**

No	Peneliti	Judul	Kesimpulan
No	Peneliti	Pemilihan Presiden (Pilpres) 2019	
8	Qonita, Eka Dyar Wahyuni, Amalia Anjani Arifiyanti	Klasifikasi berita pada akun twitter suara Surabaya menggunakan metode naïve bayes	Informasi yang disampaikan di Radio sering kali mudah terlewatkan. Begitu pula dengan informasi yang disampaikan di media sosial, informasi yang disampaikan tidak terstruktur dan tertumpuk - tumpuk.

Tabel 2.1 **Penelitian terdahulu lanjutan**

No	Peneliti	Judul	Kesimpulan	
			Sehingga dari permasalahan	
			tersebut dapat dimanfaatkan	
			untuk dilakukan pembuatan	
			model klasifikasi tweet pada ak	
			un Twitter Suara Surabaya	
			dengan menggunakan metode	
			Naïve Bayes. Tweet	
			diklasifikasikan menjadi empat	
			kategori, yaitu tweet kemacetan,	
			kecelakaan, cuaca dan selain	
			ketiga topik sebelumnya.	
			Tahapan membangun model kla	
			sifikasi Tweet Suara Surabaya	
		adalah identifikasi masalah, stu		
			literature, pengumpulan dan	
		penyiapan data, dilanjut dengan		
			pra-proses, pembangunan model	
			dan evaluasi model. Hasil	
			penelitian menunjukkan bahwa	
			akurasi teringgi didapatkan	
			dengan menggunakan	
			Multinomial Naïve Bayes	
			dengan akurasi sebesar 89%.	
9	Oke	Analisis sentimen	Melalui media sosial salah	
	Dwiraswati,	pada twitter terhadap	satunya Twitter, masyarakat	
	Kemal	penggunaan	memberikan beragam opini,	
	Nazaruddin	antibiotik di	sehingga dapat dibuat analisis	
	Siregar (2019)	indonesia dengan	sentimen terhadap penggunaan	
		naïve bayes	antibiotik di Indonesia yang	

Tabel 2.1 **Penelitian terdahulu lanjutan**

No	Peneliti	Judul	Kesimpulan
		classifier	diklasifikasikan menjadi 2 kelas
			yaitu positif dan negatif. Tujuan
			penelitian ini merancang sistem
			untuk analisis sentimen terhadap
			penggunaan antibiotik dari
			Twitter menggunakan metode
			pengklasifikasian berbasis
			machine learning, yaitu Naive
			Bayes Classifier. Dari hasil uji
			dengan 10-fold cross validation
			diperoleh nilai rata-rata akurasi
			84% dengan rincian precission
			88%, recall 81% dan f-measure
			84% dengan jumlah 200 tweet
			(100 negatif,100 positif) dibagi
			ke dalam data latih:data uji = 9:1.
			Disimpulkan bahwa metode
			Naive Bayes Classifier dapat
			diterapkan untuk melakukan
			analisis sentimen terhadap
			penggunaan antibiotik di
			Indonesia.
10	Fajar	Implementasi	Film merupakan salah satu topik
	Ratnawati	Algoritma Naive	yang sangat menarik untuk
	(2018)	Bayes Terhadap	dibicarakan. Ketika seseorang
		Analisis Sentimen	menulis opini suatu film, maka
		Opini Film Pada	semua unsur yang ada di dalam
		Twitter	film tersebut akan dituliskan.
			Data opini film pada penelitian

Tabel 2.1 Penelitian terdahulu lanjutan

No	Peneliti	Judul	Kesimpulan	
			ini diambil dari komentar film	
			yang ditulis di twitter.	
			Banyaknya opini yang dituliskan	
			di twitter membutuhkan	
			pengklasifikasian sesuai	
			sentimen yang dimiliki agar	
			mudah untuk mendapatkan	
			kecenderungan opini tersebut	
			terhadap film apakah cenderung	
			beropini positif atau negatif.	
			Algoritma yang akan digunakan	
			pada penelitian ini adalah	
			Algoritma Naive Bayes.	
			Berdasarkan hasil eksperimen,	
			analisis sentimen yang dapat	
			dilakukan oleh sistem dengan	
			akurasi yang didapat adalah 90 %	
			dengan rincian nilai precission	
			92%, recall 90% dan f-measure	
			90%.	

2.2 Analisis Sentimen

Analisis sentimen adalah proses menentukan sentimen dan mengelompokkan polaritas teks dalam dokumen atau kalimat sehingga kategori dapat ditentukan sebagai sentimen positif, negatif, atau netral (Zuhdi dkk, 2019). Saat ini, peneliti secara luas menggunakan analisis sentimen sebagai salah satu cabang penelitian dalam ilmu komputer. Jejaring sosial, seperti Twitter, umumnya digunakan dalam analisis sentimen untuk menentukan persepsi public (Tineges dkk, 2020). Analisis sentimen juga dapat disamakan dengan opinion mining, karena berfokus pada pendapat yang menyatakan positif atau negatif. Dalam analisis

sentimen, penambangan data dilakukan untuk menganalisis, memproses, dan mengekstrak data tekstual dalam suatu entitas, seperti layanan, produk, individu, fenomena atau topik tertentu. Proses analisis dapat mencakup teks ulasan, forum, tweet, atau blog, dengan data preprocessing mencakup proses tokenization, stopword, penghapusan, stemming, identifikasi sentimen, dan klasifikasi sentiment (Rasenda dkk, 2020).

2.3 Data Mining

Menurut Prasetyo (2014), mengartikan data mining sebagai berikut: "Data mining adalah campuran dari statistik, kecerdasan buatan dan riset basis data yang masih berkembang". Proses data mining secara sistematis, ada tiga langkah utama yaitu:

- 1. Eksplorasi atau pemrosesan awal data Prosess ini terdiri dari pembersihan data, normalisasi data, transformasi data, penanganan data yang salah, reduksi dimensi, pemilihan subset fitur dan sebagainya.
- Membangun model dan melakukan validasi terhadapnya Proses analisis berbagai model dengan kinerja prediksi yang terbaik. Dalam proses ini menggunakan metode-metode seperti klasifikasi, regresi, analisis cluster dan deteksi anomali juga masuk dalam langkah eksplorasi.
- Penerapan Proses menerapkan model pada data yang baru untuk menghasilkan perkiraan atau prediksi masalah yang diinvestigasi (Prasetyo, 2014).

2.3.1 Teknik-Teknik Data Mining

Teknik-Teknik Data Mining sebagai suatu rangkaian proses, data mining dapat dibagi menjadi beberapa tahapan proses. Teknik-teknik ini digunakan untuk mengekstraksi pengetahuan dalam data mining adalah sebagai berikut:

- 1. *Predictive modelling* yang merupakan pengolahan data mining dengan melakukan prediksi/peramalan. Tujuan metode ini untuk membangun model prediksi suatu nilai yang mempunyai ciri-ciri tertentu.
- 2. Association (Asosiasi) merupakan teknik dalam data mining yang mempelajari hubungan antar data.

- 3. *Clustering* (Klastering) atau pengelompokkan merupakan teknik untuk mengelompokkan data ke dalam suatu kelompok tertentu berdasarkan kemiripan.
- 4. *Classification* (Klasifikasi) merupakan teknik mengklasifikasikan data. Teknik yang digunakan untuk menentukan sebuah model untuk keperluan tertentu (Defiyanti, 2015).

2.4 Teks Mining

Teks mining bertujuan menghasilkan informasi dari satu set dokumen. Teks Mining mampu menghasilkan informasi melalui pemrosesan, pengelompokan, dan analisis data-data tidak terstruktur dalam jumlah besar. Teks mining digunakan untuk mendapatkan informasi yang berguna dari serangkaian dokumen dengan sumber data pada teks yang memiliki format yang tidak terstruktur. Proses pengambilan informasi dalam teks mining dapat menghasilkan analisis perasaan yang secara emosional mengidentifikasi pernyataan jika positif atau negatif. Objek teks mining merupakan dokumen tidak terstruktur atau semi terstruktur. Teks mining secara efektif mengekstrak informasi yang diperlukan dari sejumlah dokumen. Gambar 2.1 menunjukkan teks tidak terstruktur menjadi data material terstruktur dalam teks mining dan kemudian disimpan dalam basis data terstruktur (Gao dkk, 2020).

Gambar 2.1 Proses Teks Mining

2.5 Naïve Bayes Classifier

Klasifikasi merupakan tahap pembelajaran yang bertujuan untuk mengelompokkan sebuah objek berdasarkan data latih yang telah ditentukan kelasnya terlebih dahulu, kemudian proses selanjutnya mengelompokkan data baru berdasarkan probabilitas yang mendekati kelas yang sudah ada. Salah satu metode kalsifikasi yang sering dilakukan atau digunakan adalah Naïve Bayes Classifier (Pandhu dan Diki, 2020). Algoritma Naive Bayes Classifier merupakan sebuah metode klasifikasi yang menggunakan metode probabilitas dan statistik yang dipresentasikan oleh ilmuwan Inggris yang bernama Thomas Bayes. Algoritma Naive Bayes memperhitungkan peluang di masa depan berdasarkan pengalaman sebelumnya sehingga dikenal sebagai Teorema Bayes. Karakteristik dari Naive Bayes Classifier ini adalah asumsi yang sangat kuat (naif) akan independensi (tidak ketergantungan) dari masing-masing kondisi atau kejadian (Darwis, 2019). Perhitungan Bayes didasarkan pada rumus Teorema Bayes dengan rumus umum sebagai berikut:

$$\mathbf{P}(\mathbf{H}|\mathbf{X}) = \frac{P(H|X)}{P(H)} . (\mathbf{PH}) \qquad (2.1)$$

Keterangan:

X : Data dengan class yang belum diketahui

H : Hipotesis data merupakan suatu class spesifik

P(H|X): Probabilitas hipotesis H berdasar kondisi X (posteriori probabilitas)

P(H) : Probabilitas hipotesis H (prior probabilitas)

P(X|H): Probabilitas X berdasarkan kondisi pada hipotesis H

P(X): Probabilitas X.

Dasar dari Naïve Bayes yang dipakai dalam pemrograman adalah rumus Bayes (Br Ginting & Trinanda, 2013):

$$P(A|B) = (P(B|A) * P(A))/P(B)$$
 ----(2.2)

Nilai probabilitas sebuah dokumen yang berrada dalam kelas c dapat dinyatakan dengan persamaan sebagai berikut (Lesmana, 2013):

$$\mathbf{P}(\mathbf{c}) = \frac{N_b(c)}{|N|} \qquad (2.3)$$

Keterangan:

P(C) = Probabilitas dari variabel c

Nb (c) = Jumlah dokumen pada kelas c

|N| = Jumlah seluruh dokumen pada data latih (training)

Untuk menghitung nilai conditional probability dapat menggunakan persamaan dibawah ini:

$$P(x = x_j | c) = \frac{N_b(x = x_j . c)}{N_b(c)}$$
 (2.4)

Keterangan:

Nb(x = xj,c) = fungsi yang mengembalikan jumlah dokumen b pada kelas c

Xj = kategori tweet, dengan

i1 = Sentimen Positif

j2 = Sentimen Negatif

i3 = Sentimen Netral

|V| = Jumlah kemungkinan nilai dari xj(Lesmana, 2013)

Untuk mencari nilai probabilitas tertinggi yaitu dengan menggunakan persamaan berikut ini (Lesmana, 2013):

$$C_{map} = {argmax \atop c \in c} P(c) \times \prod_{k} P(x_{k}|c)$$
 (2.5)

2.6 Confusion Matrix

Confusion matrix merupakan salah satu metode yang digunakan untuk menilai akurasi dan mengukur kemampuan suatu metode klasifikasi. Confusion matrix menyimpan informasi yang membandingkan hasil klasifikasi yang dilakukan oleh sistem dengan hasil klasifikasi yang sebenarnya. Confusion matrix merupakan suatu tools penting dalam metode visualisasi yang digunakan didalam mesin pembelajaran yang biasanya berisi dua kategori atau lebih. Confusion matrix prediksi dua kelas dapat dilihat pada gambar berikut:

ii. d			Actual Values		
Predi cted Valu	es	,	Positif(1)	Negatif(0)	
		Positif(1)	TP	FP	

Negatif(0) FN TN

Gambar 2.2 Tabel Confusion Matrix

Sumber: (towardsdatascience.com 2020)

Matriks tersebut memiliki empat nilai yang dijadikan acuan dalam perhitungan, dimana:

True Positive (TP) = ketika kelas yang diprediksi positif dan faktanya positif.

True Negative (TN) = ketika kelas yang diprediksi negatif dan faktanya negatif.

False Positive (FP) = ketika kelas yang diprediksi positif dan faktanya negatif.

False Negatif (FN) = ketika kelas yang diprediksi megatif dan faktanya positif. Berdasarkan nilai TP, TN, FP dan FN dapat diperoleh nilai akurasi. Nilai akurasi menggambarkan seberapa akurat system dapat mengklasifikasi data secara benar. Nilai akurasi menggambarkan seberapa akurat system dapat mengklasifikasi data secara benar. Dari nilai akurasi, presisi dan recall diperoleh persamaan sebagai berikut:

$$Akurasi = \frac{TP + TN}{(TP + TN + FP + FN)} \times 100\% \qquad \cdots \qquad (2.6)$$

$$Presisi = \frac{TP}{(FP + TP)} \times 100\% \qquad (2.7)$$

$$Recall = \frac{TP + TN}{(FN + TP)} \times 100\% \qquad (2.8)$$

Sementara itu, untuk klasifikasi dengan jumlah keluaran kategori kelas yang lebih dari dua (multi-class) cara menghitung akurasi dapat dilakukan dengan menghitung rata-rata dari nilai akurasi, presisi dan recall pada setiap kelas berikut persamaannya:

$$Akurasi = \frac{\sum_{1}^{1} = 1 \frac{TP_{1} + TN_{1}}{(TP_{1} + TN_{1} + FP_{1} + FN_{1})}}{1} \times 100\% \qquad (2.9)$$

$$Presisi = \frac{\sum_{1=1}^{1} TP_1}{\sum_{1=1}^{1} (FP_1 + TP_1)} \times 100\% \qquad (2.10)$$

$$Recall = \frac{\sum_{1=1}^{1} TP_1}{\sum_{1=1}^{1} (TP_1 + FN_1)} \times 100\% \qquad (2.11)$$

2.7 Rapid Miner

RapidMiner merupakan software yang bersifat terbuka dan sebagai mesin data mining RapidMiner adalah suatu solusi untuk melakukan analisis terhadap data mining, text mining dan analisis prediksi. RapidMiner memiliki sekitar 500 operator data mining, yang terdiri dari input, output, data preprocessing dan visualisasi. Rapidminer memiliki beberapa sifat sebagai berikut (European Environment Agency (EEA), 2019):

- 1. Bahasa pemograman yang digunakan adalah bahasa pemrograman java.
- 2. Proses penemuan pengetahuan dimodelkan sebagai operator trees.
- 3. Tampilan data yang efisien dengan konsep multi-layer.
- 4. Memiliki GUI, command line mode dan Java API (European Environment Agency (EEA), 2019) .

Beberapa fitur dari RapidMiner, yaitu antara lain (European Environment Agency (EEA), 2019):

- 1. Banyaknya algoritma data mining.
- 2. Bentuk grafik yang beragam, seperti tumpah tindih, diagram histogram, tree chart dan 3D Scatter plots.
- 3. Banyak variasi plugin.
- 4. Menyediakan prosedur data mining dan machine learning yaitu: ETL (Extraction, Transformation, Loading), data preprocessing, visualisasi, modeling dan evaluasi.
- 5. Menintegrasikan proyek data mining WEKA dan statistika R.

2.8 Twitter

Twitter didirikan oleh Jack Dorsey pada bulan Maret 2016 dengan situs jejaring sosialnya diluncurkan pada bulan Juli yang dioperasikan oleh Twitter, Inc. Twitter adalah layanan sosial media atau mikrobloging gratis yang penggunanya dapat mengirim dan membaca pesan singkat yang disebut tweet (Wikipedia, 2020). Mikroblogging adalah media komunikasi online yang penggunanya dapat melakukan pengaturan privasi, untuk mengontrol siapa saja yang dapat membaca status mereka dengan batasan teks singkat yang kurang dari 200 karakter. Tweet

adalah teks yang terdiri dari 140 karakter yang tampil pada halaman utama pengguna.

Tweet dapat dilihat secara publik, namun penggunanya dapat menentukan pengiriman pesan kesiapa saja dan pengguna dapat melihat tweet pengguna lainnya yang biasa dikenal sebagai pengikut (followers). Pengguna twitter juga dapat menulis pesan berdasarkan topik dengan menggunakan simbol # (hastag). Sedangkan untuk menyebutkan nama atau membalas pesan dari pengguna lain dapat menggunakan simbol @ (Wikipedia, 2020).

Twitter memerlukan layanan bit.ly untuk memperpendek url yang dikirimtampil. Fitur yang terdapat didalam Twitter (Wikipedia, 2020), antara lain:

1. Halaman Utama (*Home*)

Pada halaman utama pengguna dapatmengetahui tweet yang dikirimkan oleh pengguna lain yang telah menjadi teman kita. Halaman utama biasa disebut sebagai timeline. Timeline ini menampilkan sebuah aliran tweet yang telah tersusun sesuai dengan waktu tweet dikirim.

2. Profil (*Profile*)

Halaman ini yang akan dilihat oleh semua pengguna Twitter mengenai profil atau data diri serta tweet yang telah sempat dibuat.

3. Pengikut (*Followers*)

Pengikut adalah pengguna lain yang ingin menjadikan kita sebagai temannya. Ketika pengguna lain sudah menjadi pengikut akun seseorang, maka tweet seseorang yang telah diikuti tersebut akan munculpada halaman utama.

4. Mengikuti (*Following*)

Mengikuti kebalikan dari pengikut, mengikuti adalah akun seseorang yang sudah mengikuti akun pengguna lain agar tweet yang dikirim oleh pengguna yang diikuti tersebut dapatmunculpada halaman utama.

5. Mentions

Mention merupakan suatu cara untuk membangun hubungan terhadap suatu account pengguna twitter. Cara ini umumnya digunakan saat akan me-reply tweet atau ingin menandai suatu tweet kepada seseorang yang akan diajak bicara.

6. Favorite

Favorite yaitu cara untuk menyimpan sebuah tweet yang dianggap menarik dengan memandainya sehingga tweet tersebut dapat dibaca lagi suatu saat dan tidak hilang oleh halaman sebelumnya.

7. Pesan Langsung (*Direct Message*)

Pesan langsung sering dikenal dengan sebutan *direct message*. *Direct message* sejenis inbox pada twitter yang langsung tertuju ke pembuat tweet itu sendiri.

8. Tagar (*Hashtag*)

Hashtag "#" adalah simbol yang ditulis sebelum topik tertentu, yang digunakan agar pengguna lain dapat mencari topik yang serupa yang ditulis oleh pengguna lain juga.

9. List Pengguna

Twitter dapat mengelompokkan satu kelompok sehingga mempermudah untuk dapat melihat secara keseluruhan para daftarnama pengguna (username) yang mereka ikuti (follow).

10. Topik Hangat (*Trending Topic*)

Topik yang sedang banyak dibicarakan oleh pengguna Twitter dalam waktu yang bersamaan. Topik ini dapat membantu penggunanya untuk dapat mengerti apa yang sedang terjadi pada dunia.

11. Reply

Reply sebuah balasan atas suatu tweet yang mengarah langsung pada si pembuat tweet itu.

2.9 Covid-19

Coronavirus merupakan keluarga besar virus yang mengakibatkan penyakit pada manusia dan hewan. Pada manusia umumnya menimbulkan penyakit infeksi pada saluran pernapasan, mulai dari flu biasa hingga penyakit yang akut seperti Middle East Respiratory Syndrome (MERS) dan Sindrom Pernafasan Akut Berat atau Severe Acute Respiratory Syndrome (SARS). Coronavirus jenis baru yang ditemukan pada manusia sejak peristiwa luar biasayang muncul di Wuhan Cina, pada Desember 2019, kemudian diberi namaSevere Acute Respiratory Syndrome Coronavirus 2 (SARS-COV2) dan menyebabkan penyakit Coronavirus Disease-

2019 yang disebut dengan COVID19. Gejalanya yaitu sepertiflu demam dengan suhu ≥380C, batuk kering dan sesak napas. Cara penularannya melalui tetesan kecil (droplet) yang dikeluarkan pada saat seseorang sedang batuk atau bersin (Yayasan Sayangi Tunas Cilik (YSTC), 2020).

Masa inkubasi COVID19 (waktu dari paparan terhadap perkembangan gejala) dari virus diperkirakan antara 2 sampai 14 hari berdasarkan sumber berikut (Worldometer, 2020):

- Organisasi Kesehatan Dunia (WHO) melaporkan masa inkubasi untuk COVID19 antara 2 sampai 10 hari.
- 2. Komisi Kesehatan Nasional Cina (NHC) awalnya memperkirakan periode inkubasi dari 10 sampai 14 hari.
- 3. Amerika Serikat CDC memperkirakan periode inkubasi untuk COVID19 menjadi antara 2 sampai 14 hari.
- 4. DXY.cn, komunitas online Cina terkemuka untuk dokter dan profesional perawatan kesehatan, adalah melaporkan masa inkubasi dari "3 sampai 7 hari, hingga 14 hari ".

Waktu perkiraan kemungkinan besar akan menyempit karena lebih banyak data tersedia. Pada tanggal 30 Januari 2020, Organisasi Kesehatan Dunia (World 14 Health Organization) mendeklarasikan wabah virus Covid19 sebagai status darurat kesehatan masyarakat global (Global Public Health Emergency). Pada 23 Januari 2020 sejak terkonfirmasi kasus terbaru, pemerintah Cina menutup semua akses jaringan transportasi untuk memutus rantai penularan Covid19 di Wuhan (Worldometer, 2020). Pemerintah kota Wuhan memberlakukan penutupan wilayah yang disebut dengan Lockdown saat wabah merajalela. Tanggal 14 Juni 2020 terdapat 215 negara yang terjangkit Covid19 dengan total kasus terkonfirmasi 7.908.186 kasus di dunia. Sedangkan Indonesia menduduki peringkat ke 31 dunia dan peringkat ke 11 se Asia.